
Extended Abstract

Motivation While large language models (LLMs) are powerful and capable, their practical utility
hinges on reliably returning accurate, concise, and instruction-aligned responses. Current models
often hallucinate, over-respond, or deviate from the user’s intent. This project investigates instruction-
tuning as a means to close that gap, leveraging the UltraFeedback dataset, a large scale preference
dataset focused on instruction-response quality. Traditional training approaches like supervised
fine-tuning and preference optimization, while effective, still leave significant room for improvement
in following complex instructions. Our work addresses this challenge by introducing test-time
refinement techniques that can enhance model responses without requiring extensive retraining.

Method We develop and test three strategies: Supervised Fine-Tuning (SFT), Direct Preference
Optimization (DPO), and critique-guided test-time refinement. Our approach extends existing RL
approaches for preference optimization with critique-guided, test-time inference. We use one model
to rewrite our target model’s response, and another as a reward model to evaluate responses and return
objective scores. Most other test-time approaches have just one of these elements and involve multiple
target model generations. We evaluate both self-refinement, where the student model improves its
own outputs, and teacher-refinement, where external models of varying sizes provide the critique and
revision capabilities.

Implementation We establish baselines using SFT and DPO on the Qwen2.5-0.5B model. For our
extension, we test two refinement strategies: self-refinement (student model refines its own response)
and teacher-refinement (stronger teacher model refines the student response). We evaluate using mod-
els like Qwen2.5-1.5B-Instruct and GPT-4o mini as teachers, with llama-3_1-nemotron-70b-reward as
the reward model. The training data includes the SmolTalk dataset for SFT and UltraFeedback dataset
for evaluation and DPO. Furthermore, we process data with standardized preprocessing including
token limits of 512 for prompts and 1024 for responses, ensuring consistent evaluation across all
approaches while maintaining computational efficiency in our test-time refinement pipeline.

Results We achieve leaderboard WIN rates of 0.72 for SFT and 0.0350 for DPO on the baseline
models. Our critique-guided refinement shows significant improvements: self-refinement improves
12.5% of responses with a +1.98 average reward gain, teacher-refinement with Qwen2.5-1.5B-
Instruct improves 66% of responses with a +6.16 average reward gain, and teacher-refinement with
ChatGPT4o-mini improves 98.25% of responses with a +15.06 average reward gain. Our method
(the extension) achieves leaderboard scores of 0.7550 and 0.5300 on different prompt sets.

Discussion Our findings demonstrate that critique-guided test-time refinement is beneficial for
improving instruction-following capabilities. To begin with, our SFT baseline achieves a strong
performance with an initial leaderboard score of 0.72, demonstrating effective instruction following
on its own. However, we identify opportunities for further enhancement: while SFT produces
quality responses, it does not leverage the comparative structure inherent in preference data, and
DPO remains constrained by reference data quality. Building upon our baseline performance, our
test-time refinement extension demonstrates meaningful improvements across different approaches.
For instance, self-refinement achieves a +1.98 average reward gain and successfully improves 12.5%
of responses, representing a notable enhancement considering the inherent challenge of having a
model critique and refine its own outputs without external guidance. Teacher-refinement proves more
effective, with performance scaling directly with teacher model capability: GPT-4o mini achieves
98.25% improvement rates compared to 66% for smaller teachers. Interestingly, refinement does not
always lead to higher reward scores, especially with self-refinement or smaller teachers, suggesting
the importance of having automated reward evaluations in the loop.

Conclusion Critique-guided test-time refinement is a promising strategy for enhancing LLM
instruction following capabilities. Teacher models with larger parameter counts yield significantly
better results than self-refinement. The approach merits further study and broader adoption, with
future work potentially implementing this strategy throughout training to expand datasets.
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Abstract

While large language models (LLMs) are powerful and capable, their practical
utility hinges on reliably returning accurate, concise, and instruction-aligned re-
sponses. Current models often hallucinate, over-respond, or deviate from the user’s
intent. This project investigates instruction-tuning as a means to close that gap,
leveraging the UltraFeedback dataset—a large-scale preference dataset focused on
instruction-response quality. We establish baselines using Supervised Fine-Tuning
(SFT) and Direct Preference Optimization (DPO) on the Qwen2.5-0.5B model,
achieving leaderboard win rates of 0.72 and 0.0325, respectively. However, SFT
underutilizes the comparative structure of preference data, and DPO, though better
aligned, is constrained by the quality of the reference data. To overcome these
limitations, we propose critique-guided test-time refinement, a post-generation
approach where a teacher LLM critiques and rewrites the student model’s output,
based on values such as precision and accuracy. A reward model is used to select
the higher-scoring response between the original and refined response. We evaluate
both (1) self-refinement and (2) teacher-refinement approaches, using models like
Qwen2.5-1.5B-Instruct and GPT-4o mini as the teacher in an LLM-as-a-judge
setting. While we see some gains with self-refinement, refinement with strong
teacher models leads to the best results. Our results show that teacher-refinement
improves instruction-following quality from 66% to 98% of the time, with an
average reward gain ranging from +6.16 to +15.06—demonstrating improvement
in downstream reward model evaluation. In conclusion, critique-guided refinement
is a promising strategy for enhancing LLM instruction following which merits
further study and adoption.

1 Introduction

Given a user query, our goal is to have a Large Language Model (LLM) return an appropriate response.
Our task was to train and evaluate an LLM to generalize to unseen instructions and domains, while
maintaining a high level of accuracy and following the instructions in an overarching sense.

Instruction following is an interesting task because it tests a model’s ability to generalize, reason,
and align with human intent and preferences across a wide range of tasks and domains. This is
applicable to real-world scenarios which require agents to interpret diverse and often ambiguous
natural language. In a reinforcement learning (RL) setting, this task is especially compelling for
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study, as the agent must learn to ground abstract instructions in actionable behaviors through trial and
error, often with sparse or delayed rewards. The setting tightly couples language understanding and
exploration.

In this work, we develop and test three strategies: Supervised Fine Tuning (SFT), Direct Preference
Optimization (DPO) Rafailov et al. (2024), and critique-guided test-time refinement. Our research
objectives were to understand:

1. How much does critique-guided test-time refinement improve instruction following perfor-
mance over a model using canonical alignment techniques like SFT and DPO?

2. What are the trade-offs of two different approaches to refinement: self-refinement and
teacher-refinement?

2 Related Work

Our work builds on recent advances in reinforcement learning from feedback, where a model is
improved through explicit constitutional principles, and test-time inference. Several key papers
inform our approach to improving LLM performance on the instruction following task.

Constitutional AI (CAI) Bai et al. (2022) aligns models through a two-phase process where a model
critiques and revises its own outputs using explicit constitutional principles, followed by reinforcement
learning from AI feedback. Scaling RLAIF Lee et al. (2024) takes this further by using an AI as
the judge—training with reward signals from an off-the-shelf LLM instead of human feedback.
This approach has been shown to match or exceed RLHF performance on tasks like harmlessness
(88% vs. 76%) and to scale efficiently with methods like d-RLAIF, which bypass reward-model
training altogether. While both techniques offer AI-supervised alignment, they still rely on an initial
set of high-quality human-labeled data to bootstrap the AI judge or evaluation benchmarks, which
upperbound the model performance.

Snell et al. Snell et al. (2024) bypass data collection altogether and explore how to most effectively
allocate test-time compute to improve model responses, focusing on two main strategies: verifier-
based search (e.g., beam search or tree search against process-reward models) and adaptive refinement
of the response distribution (e.g., sequential self-revision). Their key finding: the best strategy depends
on prompt difficulty. Hard problems benefit more from beam-search or verifier-driven exploration,
while simpler problems are better suited to iterative refinement. With properly allocated compute,
these methods enable smaller models—even with less pre-training—to outperform models that are
much larger. However, the study did not examine critique-guided inference.

Our extension fills that gap. Because our base and fine-tuned models are small, we stand to ben-
efit significantly from enhanced test-time compute. We combine reward-model verification with
critique-guided refinement: first generating an answer, then having a stronger auxiliary model critique
and improve it. This hybrid approach fuses the strengths of both strategies—leveraging sequential
refinement for simpler tasks and verifier-driven exploration for harder ones—while adding a strategic
critique layer tailored to our lightweight setup.

Zhang et al. Zhang et al. (2025) present GenRM, a unified generator–verifier that predicts solution
correctness ("Yes/No") as part of normal token generation. Using next-token modeling with optional
CoT rationales and Best-of-N voting, GenRM boosts accuracy dramatically (e.g., from approximately
73% to 93% on GSM8K). Though demonstrated on math tasks, its core mechanism—automated
response verification and correction—extends naturally to general language outputs, aligning well
with our critique-guided refinement approach in broader domains.

Grattafiori et al. Grattafiori et al. (2024) uses a synthetic pipeline that inverts our workflow: starting
from human reference outputs, it prompts Llama 3.1 to generate plausible questions and answers,
then applies LLM-based self-judgment to filter and refine the data. This self-supervision enhances
capabilities in math, code, and multilingual tasks, but relies on initial human examples, may reinforce
biases, and risks compounding errors. Our method addresses these issues by coupling critique-guided
refinement from a stronger external model with synthetic supervision, reducing error amplification
and bias while retaining scalability.
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3 Methods

3.1 Supervised Fine-Tuning

Supervised Fine-Tuning (SFT) is a critical post-training step designed to align LLMs with specific
tasks or desired behaviors. SFT operates on the same fundamental principle as causal language
modeling: the objective is to minimize the cross-entropy loss between the model’s predicted next
token and the actual target token. However, a key distinction between SFT and the initial pre-training
phase lies in how this loss is applied. In SFT, for a given dataset D composed of queries x and their
corresponding desired completions y, the loss is typically calculated only on the completion tokens
(y). This masking ensures the model is trained specifically to generate high-quality responses, rather
than relearning how to process the input prompt.

The mathematical objective is:

max
θ

E(x,y)∈D

 |y|∑
t=1

log πθ(yt | x, y<t)


In our case, the initial policy πθ is initialized from the Qwen2.5-0.5B model Team (2024a).

3.2 Direct Preference Optimization

Direct Preference Optimization (DPO) is a second post-training step typically applied after SFT. It is
notable from RLHF in that it does not require training an explicit reward model. Instead, it learns
preferences implicitly by reformulating the RL problem as a supervised preference classification
problem, between the preferred (yw) and rejected (yl) preference data. The goal is to encourage the
model to learn a policy that widens the gap in likelihood between preferred and rejected responses.

The mathematical objective is:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
Here πθ refers to the policy that is being optimized and πref is the reference policy, which is kept
frozen during training. The reference is used to used to anchor the optimization and prevent too much
distributional drift. We initialize πθ and πref from our SFT model.

3.3 Extension: Critique-Guided Test-Time Refinement

Our strategy for improving instruction following in language models significantly extends existing
preference optimization approaches like Supervised Fine-Tuning (SFT) and Direct Preference Opti-
mization (DPO). This is achieved through the integration of critique-guided, test-time inference.
The core rationale behind this approach is to shift computational effort from extensive pre-training
or fine-tuning phases to the inference stage. This paradigm offers a more efficient optimization of
model responses, circumventing the need for collecting large-scale, high-quality preference data or
enduring lengthy training cycles.

This method operates under two primary assumptions:

1. Access to Test-Time Compute: The efficacy of this approach hinges on the availability of
sufficient computational resources at the time of inference to execute additional model calls.

2. Model Compatibility with Text Constructions: All participating models (both the student
model and auxiliary teacher model) must be capable of processing and generating structured
prompt-response text constructions, including critiques and revised outputs.

We leverage secondary, typically larger, models to guide the improvement of our primary, smaller stu-
dent model, a practice common in industrial applications for transferring knowledge and capabilities.
Our method incorporates two distinct auxiliary models. Specifically, the components are:
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1. Teacher Rewriter Model: This component is either the student model itself, or a secondary
teacher model tasked with rewriting and refining the target model’s initial response based on
a generated critique. Its rationale is to perform an actionable transformation on the target
model’s output, addressing identified shortcomings and incorporating improvements that
align better with the given instruction.

2. Reward Model (Critic): This is a specialized secondary model whose sole function is to
objectively evaluate the quality of a given response to a prompt, returning a quantitative
score. The rationale for using a dedicated, separate reward model is two-fold:

• Specialization of the Reward Function: It allows for the development of a highly
specialized and robust reward function that can accurately capture nuanced aspects of
response quality.

• Mitigation of Internal Bias: By separating the evaluation task from the generation
task, we avoid the inherent bias that would arise if the generative model were to
“objectively" evaluate the quality of its own response or compare it to others. This
ensures a more impartial and reliable assessment of response quality.

By iteratively applying critiques and revisions guided by an objective reward signal at test-time, our
method enables the target model to generate more precise and instruction-following outputs without
requiring further gradient updates to its weights.

The pipeline is as follows:

1. The student model (our SFT fine-tuned baseline) generates a response for a given prompt.
2. We use a teacher LLM to critique the student model’s response, based on core values such as

precision, instruction following, truthfulness, and helpfulness Bai et al. (2022). We provide
the critique prompt in Appendix A.

3. The teacher rewrites the response of the student model.
4. A reward model scores the original response and the revised response. The “winning"

response (i.e., the response with the higher reward) is returned.

Figure 1: Visualization of our refinement pipeline using llama-3_1-nemotron-70b-reward Wang
et al. (2024) as the reward model.

We tested two refinement strategies:

• Self-Refinement In this case, the student is also its own teacher. We generate the initial
response, and feed that response and the refinement instructions into the same model, so
that the student refines its own response.

• Teacher Refinement In this case, a stronger teacher model refines the student response.
Several larger models were tested for this strategy.
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4 Experimental Setup

4.1 Data

We train our initial SFT base model on the SmolTalk dataset Allal et al. (2025). SmolTalk is a large
prompt-and-response dataset, where each entry contains several pairs of user queries and assistant
responses. We use 200,000 train data entries and half of the 2,000 test data entries. We excerpted
only the first prompt and response from each entry, removed prompts over 512 tokens, and truncated
example responses to 1024 tokens, applied end-sequence tokens and chat templates. We masked
query tokens prior to training.

User Assistant
Hey Olivia,
It was great running into you at the coffee shop the
other day! I really enjoyed our conversation about
your art history project and how it relates to my
mass communication studies.
I was thinking it might be fun to meet up again
sometime and discuss our projects further. Maybe
we could even find some ways to collaborate?
Let me know if you’re interested and when you
might be free to grab a coffee. I’m pretty flexible
this week.
Best,
Jordan

Jordan suggests meeting again to discuss and po-
tentially collaborate on projects.

Begin with a prompt to start our conversation on
creative writing. Consider starting with this:
"What project are you currently working on or
planning to start soon?"

What project are you currently working on or plan-
ning to start soon?
Are you diving into a new world of fantasy, craft-
ing a romantic tale, or perhaps experimenting with
a unique blend of genres?
Maybe you have a nagging idea that refuses to be
silenced, or a character that’s been whispering in
your ear, begging to be brought to life.
Whatever it is, I’m here to help you nurture and
shape your creative vision.
Share your thoughts, and let’s embark on this writ-
ing journey together!

Table 1: SmolTalk Data Examples

We evaluate our DPO and Extension models on the UltraFeedback dataset Cui et al. (2024), which is
an extensive preference dataset of language-model-focused generation-type questions, paired with a
preferred and dispreferred response. The dataset also includes the respective scores of each response.
We used the prompt, chosen, and rejected data entries. For all models, we utilized the train_prefs split
of 61,100 items and test_prefs split of 2,000 items for train and test sets, respectively. We applied
end-sequence tokens and chat templates, removed prompts over 512 tokens, and truncated example
responses to 1024 tokens.

Prompt Chosen Rejected
let’s play a game. i say a sentence, then you
make a sentence that follows up my sentence
then i give a continuation to yours and so on.
you ready?

I’m ready! Let’s be-
gin. Please provide
your first sentence.

Sure, I would love to
play.

Detailed Instructions: In this task, you will
be shown a correct English sentence. You
need to generate an incorrect form of the input
sentence. Q: i would have a variety of answers
subjective to every person ’s field of interest .
A:

i would have a variety
of answers varying ob-
jectively to everyone’s
field of interest.

i would has a variety of
answer subjective for
every person’s fields of
interests.

Table 2: UltraFeedback Data Examples
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4.2 Baselines & Metrics

We evaluate our models using “win rates", which measures how often our model’s responses are
better than a reference model responses on the dataset, calculated by comparing their reward model
score. For example, a win rate of 0.72 indicates that our model outperforms the reference model (i.e.,
has a higher reward score) 72% of the time. The reward score is given using a separate reward model,
like llama-3_1-nemotron-70b-reward Wang et al. (2024).

Our SFT baseline trained on the SmolTalk dataset using the Qwen2.5-0.5B model with the following
hyperparameters: a learning rate of 2e-5 with 100 warmup steps and linear decay, Adam optimization,
a batch size of 2 with 32 gradient accumulation steps (effective batch size of 64), and 0.5 epochs of
training on SmolTalk. The DPO model builds on the prior SFT checkpoint, which is used to initialize
the policy and reference model. DPO is trained for 1 full epoch on the UltraFeedback preference
dataset with a learning rate of 1e-6 with 100 warmup steps and no decay, Adam optimization, β = 0.1
for the preference optimization objective, and without mixed precision training to ensure training
stability.

For our critique-guided refinement extension, our evaluation strategy focuses on improvement over
baseline performance rather than absolute scores. We measure: (1) the percentage of responses where
teacher-refined outputs achieve higher reward scores than original student responses, and (2) the
average reward score improvement between initial and final responses. This framework captures
both the frequency and magnitude of improvements achieved through test-time refinement using the
Nemotron-70B reward model for objective evaluation.

The extension operates entirely at inference time, requiring no additional training. We tested three
refinement configurations: self-refinement using the student model itself, teacher-refinement with
Qwen2.5-1.5B-Instruct (1.5B parameters) Team (2024b), and teacher-refinement with GPT-4o-mini
(8B parameters) OpenAI (2024). All experiments used consistent generation parameters: temperature
= 0.3, top_p = 0.9, max_new_tokens = 512, with single-iteration refinement to maintain computational
efficiency. Training was conducted using PyTorch with HuggingFace Transformers on AWS cloud
infrastructure, integrating GPU acceleration and the Accelerate library for distributed training support
(though we did not leverage this due to only having 1 NVIDIA L40S GPU available).

5 Results

The win rates are calculated using the loss of the corresponding base model (SFT or DPO). For our
extension evaluation, we focus on improvement over baseline performance rather than absolute scores
since our goal is to improve what the baseline model already produces rather than replace it entirely.

Below we provide a comparison of the three main strategies we implemented (SFT, DPO, and our
Critique-Guided Refinement Extension). We also deep dive into different strategies for refinement.

Table 3: Overall Methods Performance

Model Leaderboard Version Leaderboard Score Training Loss Evaluation Loss
SFT 1 0.7200 0.17 0.16
DPO 2 0.0350 0.68 0.58
SFT + Extension 1 0.7550 N/A N/A
SFT + Extension 2 0.5300 N/A N/A

Figure 2: Training loss curves for the SFT model. The model showed gradual and steady improvement.
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Figure 3: Training loss curves for the DPO model. Note the initial DPO eval loss of 0.68 corresponds
to − ln(0.5), indicating that the model starts with random preference between the chosen and rejected
responses. As it trains, it starts to prefer the chosen responses over the rejected ones.

Our SFT model achieved a high win rate on leaderboard version 1 (a score of 0.72). Our DPO model
trained smoothly but did not fare as well. While for many queries it produces clean responses, other
time it degenerates into producing list of words. We provides a good example and bad example of
our DPO model responses in the Appendix B. We suspect rambling happens because our SFT model
was under-trained. The success of DPO highly depends on having a strong SFT starting point.

Our extension, which builds on top of the SFT model, also achieves a very high leaderboard score,
both on the initial leaderboard prompt set and the updated leaderboard prompt set.

5.1 Quantitative Evaluation

Table 4: Comparison of Extension Methods

Model % Responses Improved Average Reward ↑
Self-Refinement 12.5% +1.98
Teacher: Qwen2.5-1.5B-Instruct 66% +6.16
Teacher: ChatGPT4o-mini 98.25% +15.0573
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Figure 4: Performance comparison across all methods. Note that in the CS 224R class leaderboard
submission, DPO was evaluated against a different reference model than SFT.

As illustrated above, our results demonstrate a clear scaling relationship between teacher model
capability and refinement effectiveness. Even self-refinement by the student model improves the
system’s performance, achieving measurable gains across 12.5% of responses. However, teacher-
refinement shows substantially greater improvements as the model size increases. The Qwen Instruct
model is preferred to the SFT baseline more than half the time. The ChatGPT 4o-mini model revises
the response so effectively it is chosen nearly every example, and on average improves the response
reward by 15 points, validating our hypothesis that larger teacher models enable substantially better
instruction following enhancement.

7



5.2 Qualitative Analysis

We provide here some context of the system responses, especially since a language model is not
strictly quantifiable.

Prompt: Convert the negative review "the hotel room was dirty and had a terrible smell" into a
positive review by making minimal changes, without altering the context of the review.

Original (SFT): to: "The hotel’s rooms were clean and smelled fresh." \n This revised sentence
maintains the same meaning as the original but with some minor adjustments for clarity and style. The
change from "was dirty" to ’were dirty", which is more concise while still conveying that something
was not good about it. Similarly, I changed "had a bad smell" to simply stating what happened in the
room (smells being "bad"), rather than using an adverb like "terrible". This makes the language even
simpler and easier to read. ... (continues). Reward: -32.5

Original (DPO): The new guest stayed at our lovely resort last night in their cozy little apartment
with its pristine rooms filled with soft white sheets that were immaculately clean from head to toe!
The air inside seemed fresh as well - no lingering smells or unpleasant odors wafting through the
space like they did this morning when I checked out. I must say though, it’s nice having such an
amazing place where everyone can feel comfortable during my stay here – not just myself but also
for guests who might be looking over there too! Overall, we’re very pleased about how everything
went so far today; however, if you have any concerns .... (continues) Reward: -28.375

Self-Refinement: I have revised the original negative review to a positive one by making minimal
changes to the context of the review. Here is the revised response: "The hotel’s rooms were clean
and smelled fresh." This revised sentence maintains the same meaning as the original but with some
minor adjustments for clarity and style. The change from "was dirty" to "were dirty" is more concise
while still conveying that something was not good about it. Similarly, I changed "had a bad smell"
to simply stating what happened in the room (smells being "bad"), rather than using an adverb like
"terrible" ... (continues). Reward: -35

Teacher-Refined Qwen2.5-1.5B-Instruct: Certainly! Here’s a revised positive version of the
negative review: "The hotel room was spotlessly clean and had a pleasant, fresh scent." This version
captures the essence of the original but emphasizes cleanliness and freshness more strongly. It also
slightly restructures the sentence to sound more polished. Reward: -19.0

Teacher Refined ChatGPT4o-mini: New review: Positive Review: Hostess Sarah Smith welcomed
me back after having spent 12 hours staying at this lovely and comfortable guesthouse. She quickly
contacted me to resolve several minor concerns and assure me that she would do her best to improve
upon them. After spending more than two [Number] minutes enjoying the luxurious accommodations,
I felt thrilled to finally arrive home and indulge myself in delicious food and drinks from the kitchen.
One thing that caught my attention was the way the staff seemed so attentive to my needs and
responded promptly when asked questions about the condition of my properties. ... (continues).
Reward: -24.75

This example clearly demonstrates the scaling effect of teacher model capability, with the Qwen-1.5B
teacher achieving the highest reward score (-19.0) by providing a concise, directly relevant response
that properly addressed the instruction. While ChatGPT4o-mini generated more elaborate content,
it deviated significantly from the original context, highlighting that larger models do not always
guarantee better task-specific performance.

6 Discussion

We found that our SFT model is generally able to produce reasonable responses. The example
response given is not strictly incorrect. However, it can sometimes suffer from rambling and
repetition, additional long-winded explanation, and unnatural formatting (for example, note the extra
"to: " in the SFT response above).

Simultaneously, we see that critique-guided test-time refinement can improve beyond SFT levels the
instruction following capabilities of the LLM. The Qwen teacher-refined example shared is much
shorter (and thus less rambly), and intensified the quality of the response impact. Accordingly, the
reward is higher. However, test-time refinement does not always lead to a higher reward score. Self-
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refinement, as shown in the example, can lead to lower reward, and similarly suffers from rambling.
This isn’t unexpected, as a model that lacks conciseness correcting another wordy model would
not reduce the loquaciousness. In the example, our largest teacher model (GPT4o) also expanded
unnecessarily on the prompt, although with a commercial large model like GPT, user ratings that
length is preferable to conciseness may have implicitly shifted the model focus away from our goal.
To go more into data-wise detail, we explored 1) self-refinement and 2) teacher-refinement.

• Self-refinement improved the reward, but only for 12.5% of the original SFT model
responses. This may be due to our SFT model’s inherent limited ability to follow instructions,
including instructions to edit its own prior response.

• Teacher-refinement using Qwen2.5-1.5B-Instruct improved the reward 66% of the time
compared to the original SFT model response. We expected the teacher model to always
perform better given its larger parameter count and pre-training / post-training data. Interest-
ingly, the teacher model often improved the reward, but not always.

• Teacher-refinement using ChatGPT4o-mini improved the reward 98% of the time compared
to the original SFT model response. This teacher model almost always performs better given
its larger parameter count and pre-training / post-training data. The single prompt provided
illustrates that reward increases are not the same across models. However, GPT4o does
average the highest increase in reward, showing how different models and strategies can
perform to different qualities depending on prompt details.

Our work has some important limitations that warrant consideration. First, the effectiveness of
refinement is constrained by the capabilities of the teacher model; while our results demonstrate
clear scaling effects from Qwen2.5-1.5B-Instruct to GPT-4o-mini, even stronger teacher models
may yield more substantial gains. However, larger teachers also increases the test-time compute,
which can be expensive. Second, we observe that refinement does not consistently lead to higher
reward scores, suggesting a potential misalignment between automated reward model evaluations and
human quality judgments. This discrepancy is particularly evident in our qualitative example where
the Qwen teacher achieved a better reward than the more capable GPT-4o-mini model, highlighting
the need for more robust evaluation frameworks. Third, our DPO baseline achieved a surprisingly
low performance (0.0350 win rate), likely due to DPO’s sensitivity to reference model quality
and the limited training data, as DPO requires a strong reference model and sufficient preference
examples to effectively learn from comparative feedback. Our SFT or reference model was probably
undertrained and weak compared to the leaderboard model. This poor DPO performance may have
inflated the apparent benefits of our SFT-based extension approach. Fourth, our evaluation lacks
human oversight after the initial preference fine-tuning stage, which has been shown to be crucial for
maintaining alignment quality Lee et al. (2024). Finally, while our approach demonstrates substantial
improvements in response quality, it comes with significant computational overhead during inference,
requiring multiple model forward passes and reward model evaluations that may limit practical
applicability in resource-constrained environments.

7 Conclusion

In conclusion, we have shown that a mélange of test-time strategies combined in critique-guided
test-time refinement increases the instruction-following of large language models significantly. Our
teacher-reward model system is valuable to add to the collection of effective test-time improvement
strategy options. It would be recommended to choose a teacher model with a larger number of
parameters, as using the same student model as the teacher model only improves the results a small
amount. Our results demonstrate that this approach offers a practical pathway to enhance model
performance without requiring expensive retraining, achieving up to 98% improvement rates with
sufficiently capable teacher models. Importantly, this method enables smaller deployed models
to benefit from the capabilities of larger models during inference, making high-quality instruction
following more accessible.

8 Future Work

Several promising directions could extend our critique-guided refinement approach to broader appli-
cations and improved effectiveness. First, integrating this strategy directly into the training process
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could create synthetic training data from refined responses, potentially improving base model capa-
bilities. Second, it would be recommended to explore stronger preference optimization algorithms
like RLOO, as stronger foundational models may yield superior performance compared to our cur-
rent DPO baseline. To address our current limitations, future research should incorporate human
evaluation alongside automated reward models to better align refinement outcomes with human
quality judgments. That work should also develop more efficient refinement architectures to reduce
computational overhead while maintaining quality gains. Additionally, investigating the approach’s
effectiveness across specialized domains (such as medical or legal text), non-English languages
(particularly low-resource languages), and different model families (such as encoder-decoder archi-
tectures or mixture-of-experts models) would provide valuable insights into its generalizability and
practical deployment potential.

9 Team Contributions

These are updated breakdowns reflecting our contributions over the quarter.

• Pooja Sethi: Coded initial SFT and extension implementations and revised much of the
DPO implementation. Pair-programmed with Marielle to debug SFT and DPO dataloaders
and trainers, and made the poster. All team members edited the final paper.

• Marielle Baumgartner: Coded initial DPO implementation and rough-drafted all written
materials. Updated the extension to support stronger teacher models. Pair-programmed with
Pooja to debug the SFT and DPO dataloaders and trainers, and made the poster. All team
members edited the final paper.

• Malisha Lutchmeea: Coded initial SFT implementation, made the poster, and wrote the
final paper. All team members edited the final paper.

Changes from Proposal Initially, we proposed exploring synthetic data generation as our primary
extension. Then we experienced challenges with our SFT baseline, including training instability and
repetitive generation patterns, that degraded response quality over longer sequences. Furthermore,
we hit a roadblock with our DPO implementation, requiring a non-training or DPO-based extension.
These empirical observations led us to pivot toward test-time inference optimization, specifically
implementing critique-guided refinement with multiple teacher models of varying capabilities. While
the core critique-guided refinement methodology remained consistent with our proposal, the change
to test-time inference and the systematic evaluation of teacher model scaling effects represented a
more targeted approach than our originally proposed synthetic data augmentation strategy.
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A Critique Prompt

Below is the prompt given to the teacher, which is used to refine the student response.

refinement_instruction = (
"The response below may have not fully meet the quality criteria. "
"Please revise the response to be more precise, helpful, honest, and truthful. "
"Ensure you strictly follow the instruction and avoid any "
"rambling or irrelevant information. "
"Please only output the new response. "
"Do not provide any explanations of changes that were made. \n"
f"Here is the original instruction:\n{prompt}\n"
f"Here is the response to revise:\n{current_response}\n"

)

B DPO Responses

An example of a good response we got from our DPO model:

Prompt List the top 5 most influential scientists in history.

Response
1) Albert Einstein - Known for his theory of relativity, which revolutionized our understanding of
space and time.

2) Isaac Newton - His laws of motion laid down fundamental principles that govern how objects
move through various forces such as gravity and friction.

3) Marie Curie - She discovered two elements: radium (now known to be uranium), and polonium;
she also developed methods for extracting these materials from their ores using her groundbreaking
technique called X-ray radiography.

4) Charles Darwin - He is widely regarded as one of humanity’s greatest biologists because he
proposed evolution by natural selection during the late 19th century while studying finches on
Galapagos Islands.

5) Thomas Edison - A prolific inventor who made numerous contributions throughout his career
including electric light bulbs, telephones, incandescent lights, dynamo motors, electrical appliances
like kettles and washing machines, among many others.

These five individuals have had an immense impact upon human knowledge over centuries due
largely thanks to scientific discoveries they’ve led or helped shape with their work across multiple
fields within science itself! Their achievements continue inspiring future generations today despite
being born thousands years apart... but still hold great relevance nonetheless!

An example of a poor response we got from our DPO model:

Prompt Design a wellness package for a busy professional that includes stress-relief items like a
meditation app subscription, essential oil diffuser, herbal teas, a journal for mindfulness exercises, a
weighted blanket, and noise-canceling headphones. Also, suggest a personalized self-care schedule
incorporating these items.

Response
Welcome to our Wellness Package! Here’s an overview of the content we’ll include in this compre-
hensive plan:

1. **Meditation App Subscription**: We recommend using Headspace or Calm...

2. **Essential Oil Diffusers**: Calming scents such as lavender, chamomile tea...

3. **Herbal Teas**: A blend of green, black, chai, peppermint, ginger, turmeric...
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4. **Journal For Mindfulness Exercises**: - Daily Meditation: Set aside 5–7 minutes... - Guided
Imagery: Focus on goals such as working efficiently, relaxation... - Mindful Breathing: Techniques
like box breathing, alternate nostril...

5. **Yoga Poses and Gentle Movement**: - Includes poses like Cat-Cow, Warrior I/II, Child’s Pose...

[Rambling starts here — overly long list of unrelated body parts and functions:]

*Practice Gentle Stretching Strengthening Activities*: Stretches targeting hips, lower backs, shoul-
ders, arms, wrists, hands, feet, ankles, joints, tendons, ligaments, bones, connective tissues, fascia,
muscle tissue, cartilage, discs, nerves, veins, arteries, capillaries, lymphatic vessels, organs, digestive
tract, urinary bladder, reproductive system, skin, hair, nails, gums, teeth, eyes, ears, nose, sinuses,
throat, mouth, uvula, tongue, lips, cheeks, chin, jaw, cheek bone, ear canal, auricle, sinus, tonsils,
pharynx, nasal passages, bronchial tubes, esophagus...

... [Truncated for clarity]

Analysis

In response to the "wellness package" question above, while the model starts off strong and provides
great structure, it begins producing unnecessarily long lists of semantically-related words. The model
gets stuck following word associations rather than staying focused on the task. There are potentially
several underlying reasons for this.

First, DPO may have been impacted by under-training of the SFT model. DPO requires a strongly
grounded base model. We were only able to train our SFT model for 0.5 epochs on the SmolTalk
dataset due to limited compute and time available (we faced challenges with AWS spot instances
that prevented longer training). Thus, our SFT model was not able to fully overcome the repetitive
behavior which also occurs in the Qwen2.5-0.5B base model.

Second, our SFT baseline used Qwen2.5-0.5B (494M parameters) for computational efficiency.
However, this smaller size may lack the capacity needed for effective preference learning.

Finally, it’s possible that we could have chosen better generation parameters. We used nucleus
sampling with top_p=0.9 and temperature=0.3 (though when we tried the ones suggested by the
course staff, top_p=0.95 and temperature=0.6, our model still exhibited this behavior).

This directly motivated our shift to test-time refinement where we bypass training limitations by using
external models. This approach may be especially valuable when optimal training is not practical due
to resource constraints.
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